Design and Fabrication of on Chip Microwave Pulse Power Detectors
نویسندگان
چکیده
Title of Dissertation: DESIGN AND FABRICATION OF ON CHIP MICROWAVE PULSE POWER DETECTORS Woochul Jeon, Doctor of Philosophy, 2005 Directed By: Professor John Melngailis Department of Electrical and Computer Engineering On-chip microwave pulse-power detectors are promising devices for many electrical systems of both military and commercial applications. Most research in microwave power detector design have been focused on thermal power detectors, such as thermistors or thermocouples, due to their wide dynamic range and high frequency operation. However, due to their slow thermal response time, it is impossible to detect microwave pulses with a few micro or sub-micro seconds of pulse width. Schottky diode power detectors are the best candidates for this purpose due to their fast pulse response time and small size. We have developed a means for fabricating Schottky diodes as part of any Complementary-Metal-Oxide-Semiconductor (CMOS) process by modifying the layout file. CMOS Schottky diodes were added at pre-selected locations through a CMOS process. We have also developed a process for adding or deleting Schottky diodes on a CMOS fabricated chip by using Focused Ion Beam (FIB). FIB milling and ion induced deposition were used for adding or deleting Schottky diodes at any desired location on a CMOS-fabricated chip as a post-CMOS process. Spice models of CMOS Schottky diodes were developed and used for designing the RF front end circuits in passive RF circuits. MOSFET based RF pulsed power detector circuits were also designed and fabricated. Fabricated power detectors were tested under direct injection and radiation of microwave pulse signals. Measured results for fabricated CMOS Schottky diodes, FIB Schottky diodes and MOSFET half-wave and full-wave rectifier circuits are summarized in a table with the pulse response time, the dynamic range, the sensitivity, and the frequency response to determine which power detector is the best choice for detecting a specific source signal. DESIGN AND FABRICATION OF ON CHIP MICROWAVE PULSE POWER DETECTORS
منابع مشابه
Design and Fabrication of a Microwave Weed Killer Device for Weed Control Applications
In this paper, the design and the results of a microwave radiation system for agriculture applications is discussed. The system is fabricated and successfully tested on weed seeds. The device, which uses a commercial 1 kW magentron, proved to be effective for preventing the germination control of popular weeds of Iran. Seven weed species were tested separately by using this system and then the ...
متن کاملDesign, Fabrication and Measurement of Two-Layered Quadruple-Band Microwave Metamaterial Absorber
The design, simulation, fabrication, and measurement of two structures of metamaterial absorbers (MA) is investigated at microwave frequency in this paper. By stacking of one layer structure on the top of each other, a two-layered structure is generated. The unit cell at each layer consisting of two sets of various circular and square patches are designed so that the structure exhibit quad band...
متن کاملDesign and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit
This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also conta...
متن کاملDesign of X Band High Power Amplifier MMIC Based on AlGaN/GaN HEMT
In this paper, we have presented an X band high power amplifier based on MMIC (Monolithic Microwave Integrated Circuit) technology for satellite remote sensing systems. We have used GaN HEMT process with 500 nm gate length technology with VD= 40 V and VG= -2 V in class E structure. The proposed two-stage power amplifier provides 25 dB power gain with maximum output power of 49.3 dBm at 10 GHz. ...
متن کاملDesign and fabrication of an effective micromixer through passive method
Micromixer is a significant component of microfluidics particularly in lab-on-chip applications so that there has been a growing need for design and fabrication of micromixers with a shorter length and higher efficiency. Despite most of the passive micromixers that suffer from long mixing path and complicated geometry to increase the efficiency, our novel design suggests a highly efficient micr...
متن کامل